Uniform Sobolev Resolvent Estimates for the Laplace–Beltrami Operator on Compact Manifolds
نویسندگان
چکیده
منابع مشابه
Uniform Estimates of the Resolvent of the Laplace–Beltrami Operator on Infinite Volume Riemannian Manifolds with Cusps.II
We prove uniform weighted high frequency estimates for the resolvent of the Laplace-Beltrami operator on connected infinite volume Riemannian manifolds under some natural assumptions on the metric on the ends of the manifold. This extends previous results by Burq [3] and Vodev [8].
متن کاملOn L-resolvent Estimates and the Density of Eigenvalues for Compact Riemannian Manifolds
We address an interesting question raised by Dos Santos Ferreira, Kenig and Salo [11] about regions Rg ⊂ C for which there can be uniform L 2n n+2 → L 2n n−2 resolvent estimates for ∆g + ζ, ζ ∈ Rg , where ∆g is the Laplace-Beltrami operator with metric g on a given compact boundaryless Riemannian manifold of dimension n ≥ 3. This is related to earlier work of Kenig, Ruiz and the third author [1...
متن کاملON Lp RESOLVENT ESTIMATES FOR LAPLACE-BELTRAMI OPERATORS ON COMPACT MANIFOLDS
In this article we prove L estimates for resolvents of Laplace-Beltrami operators on compact Riemannian manifolds, generalizing results of [12] in the Euclidean case and [17] for the torus. We follow [18] and construct Hadamard’s parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation ...
متن کاملResolvent Estimates and Local Decay of Waves on Conic Manifolds
We consider manifolds with conic singularites that are isometric to R outside a compact set. Under natural geometric assumptions on the cone points, we prove the existence of a logarithmic resonancefree region for the cut-off resolvent. The estimate also applies to the exterior domains of non-trapping polygons via a doubling process. The proof of the resolvent estimate relies on the propagation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2013
ISSN: 1687-0247,1073-7928
DOI: 10.1093/imrn/rnt051